Fluid Inclusion Analysis

Microscopic entrapments of fluid (vapor or liquid) and occasionally minerals, that are considered to represent the chemical and physical properties of a geological fluid at a single point in time and space...

Petrography / Screening

- Identification of inclusion populations and distributions
- Relationships of inclusions relative to diagenetic (and detrital) phases
- UV epifluorescence used to identify and differentiate different hydrocarbons
- identification of post-formational effects that may impact on interpretation of results (leakage, necking etc.)
- Identification of the most prospective regions of the sample for more detailed, microthermometric analysis

Microthermometric Analysis

The temperatures at which various phase changes occur in the fluid inclusion are measured using a heating-freezing stage attached to an optical microscope.

Most commonly:

Homogenisation Temperatures (T_h)

Provides an minimum estimate of trapping temperature (subject to pressure correction)

Ice Melting Temperatures

- * First ice melting (T_{fm}) Provides information on salts present (e.g. NaCl and/or CaCl₂)
- Final ice melting (T_{ice})
 Provides an indication of salinity
 When coupled with temperatures of other phase changes (e.g. T_{fm} and T_{hydratemelting}) can be used to provide more detailed models of fluid compositions

Diplan SOX/o.sd 44 28 SD

Outputs / Applications

- Constraints on temperature and fluid compositions during cementation (e.g. recognition of meteoric vs seawater vs brine)
- Constraints on thermal and fluid chemical evolution of system (if multiple generations / cements can be analysed)
- Insight into charge history and relationship to diagenesis (by investigating the relations between hydrocarbon and aqueous inclusions and minerals).
- Temperature constraints for stable isotope data interpretation
- Refined burial / charge history models
 (or, if burial history is already well established, absolute dates for cementation)
- If an independent measure of precipitation temperature is available, then fluid inclusion data can be used to derive information on reservoir pressure during cementation

Instrumentation (in-house)

- * Linkam Scientific THMSG600 heating freezing stage (temperature range -196-600°C)
- * Computer-controlled temperature programmer enables "cycling" protocol to gradually approach temperature of a phase change.
- High quality Zeiss Axioskop microscope for optimum imaging during analysis

